看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱

2017-03-01  by:CAE仿真在線  來源:互聯(lián)網(wǎng)

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片1

圖a. Principle of GAN.


這學(xué)期,老顧在講授一門研究生水平的數(shù)字幾何課程,目前講到了2016年和丘成桐先生、羅鋒教授共同完成的一個(gè)幾何定理【3】,這個(gè)工作給出了經(jīng)典亞歷山大定理(Alexandrov Theorem)的構(gòu)造性證明,也給出了最優(yōu)傳輸理論(Optimal Mass Transportation)的一個(gè)幾何解釋。

這幾天,機(jī)器學(xué)習(xí)領(lǐng)域的Wasserstein GAN突然變得火熱,其中關(guān)鍵的概念可以完全用我們的理論來給出幾何解釋,這允許我們?cè)谝欢ǔ潭壬嫌H眼“看穿”傳統(tǒng)機(jī)器學(xué)習(xí)中的“黑箱”。

下面是老顧下周一授課的講稿。



生成對(duì)抗網(wǎng)絡(luò) GAN


訓(xùn)練模型 生成對(duì)抗網(wǎng)絡(luò)GAN (Generative Adversarial Networks)是一個(gè)“自相矛盾”的系統(tǒng),就是以己之矛克以己之盾,在矛盾中發(fā)展,使得矛更加鋒利,盾更加強(qiáng)韌。這里的矛被稱為是判別器(Descriminator),這里的盾被稱為是生成器(Generator)。


看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片2

圖b. Generative Model.


生成器G一般是將一個(gè)隨機(jī)變量(例如高斯分布,或者均勻分布),通過參數(shù)化的概率生成模型(通常是用一個(gè)深度神經(jīng)網(wǎng)來進(jìn)行參數(shù)化),進(jìn)行概率分布的逆變換采樣,從而得到一個(gè)生成的概率分布。判別器D也通常采用深度卷積神經(jīng)網(wǎng)。

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片3

圖1. GAN的算法流程圖。


矛盾的交鋒過程如下:給定真實(shí)的數(shù)據(jù),其內(nèi)部的統(tǒng)計(jì)規(guī)律表示為概率分布

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片4
,我們的目的就是能夠找出
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片4
。為此,我們制作了一個(gè)隨機(jī)變量生成器G,G能夠產(chǎn)生隨機(jī)變量,其概率分布是
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片6
,我們希望
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片6
盡量接近
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片4
。為了區(qū)分真實(shí)概率分布
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片4
和生成概率分布
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片6
,我們又制作了一個(gè)判別器D,給定一個(gè)樣本,D來復(fù)制判別這個(gè)樣本是來自真實(shí)數(shù)據(jù)還是來自偽造數(shù)據(jù)。Goodfellow給GAN中的判別器設(shè)計(jì)了如下的損失函數(shù)(lost function), 盡可能將真實(shí)樣本判為正例,生成樣本判為負(fù)例:

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片11
。

第一項(xiàng)不依賴于生成器G, 此式也可以定義GAN中的生成器的損失函數(shù)。

在訓(xùn)練中,判別器D和生成器G交替學(xué)習(xí),最終達(dá)到納什均衡(零和游戲),判別器無法區(qū)分真實(shí)樣本和生成樣本。


優(yōu)點(diǎn) GAN具有非常重要的優(yōu)越性。當(dāng)真實(shí)數(shù)據(jù)的概率分布不可計(jì)算的時(shí)候,傳統(tǒng)依賴于數(shù)據(jù)內(nèi)在解釋的生成模型無法直接應(yīng)用。但是GAN依然可以使用,這是因?yàn)镚AN引入了內(nèi)部對(duì)抗的訓(xùn)練機(jī)制,能夠逼近一下難以計(jì)算的概率分布。更為重要的,Yann LeCun一直積極倡導(dǎo)GAN,因?yàn)镚AN為無監(jiān)督學(xué)習(xí)提供了一個(gè)強(qiáng)有力的算法框架,而無監(jiān)督學(xué)習(xí)被廣泛認(rèn)為是通往人工智能重要的一環(huán)。


缺點(diǎn) 原始GAN形式具有致命缺陷:判別器越好,生成器的梯度消失越嚴(yán)重。我們固定生成器G來優(yōu)化判別器D??疾烊我庖粋€(gè)樣本

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片12
,其對(duì)判別器損失函數(shù)的貢獻(xiàn)是

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片13

兩邊對(duì)

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片14
求導(dǎo),得到最優(yōu)判別器函數(shù)

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片15

代入生成器損失函數(shù),我們得到所謂的Jensen-Shannon散度(JS)

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片16

在這種情況下(判別器最優(yōu)),如果

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片17
的支撐集合(support)交集為零測度,則生成器的損失函數(shù)恒為0,梯度消失。


改進(jìn) 本質(zhì)上,JS散度給出了概率分布

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片17
之間的差異程度,亦即概率分布間的度量。我們可以用其他的度量來替換JS散度。Wasserstein距離就是一個(gè)好的選擇,因?yàn)榧幢?/span>
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片17
的支撐集合(support)交集為零測度,它們之間的Wasserstein距離依然非零。這樣,我們就得到了Wasserstein GAN的模式【1】【2】。Wasserstein距離的好處在于即便
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片17
兩個(gè)分布之間沒有重疊,Wasserstein距離依然能夠度量它們的遠(yuǎn)近。


為此,我們引入最優(yōu)傳輸?shù)膸缀卫碚?Optimal Mass Transportation),這個(gè)理論可視化了W-GAN的關(guān)鍵概念,例如概率分布,概率生成模型(生成器),Wasserstein距離。更為重要的,這套理論中,所有的概念,原理都是透明的。例如,對(duì)于概率生成模型,理論上我們可以用最優(yōu)傳輸?shù)目蚣苋〈疃壬窠?jīng)網(wǎng)絡(luò)來構(gòu)造生成器,從而使得黑箱透明。



最優(yōu)傳輸理論梗概


給定歐氏空間中的一個(gè)區(qū)域

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片21
,上面定義有兩個(gè)概率測度
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片22
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片23
,滿足

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片24
,

我們尋找一個(gè)區(qū)域到自身的同胚映射(diffeomorphism),

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片25
, 滿足兩個(gè)條件:保持測度和極小化傳輸代價(jià)。


保持測度 對(duì)于一切波萊爾集

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片26
,

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片27

換句話說映射T將概率分布

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片22
映射成了概率分布
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片23
,記成
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片30
。直觀上,自映射
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片31
,帶來體積元的變化,因此改變了概率分布。我們用
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片22
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片23
來表示概率密度函數(shù),用
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片34
來表示映射的雅克比矩陣(Jacobian matrix),那么保持測度的微分方程應(yīng)該是:
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片35
,

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片36
,

這被稱為是雅克比方程(Jacobian Equation)。


最優(yōu)傳輸映射 自映射

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片31
的傳輸代價(jià)(Transportation Cost)定義為

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片38

在所有保持測度的自映射中,傳輸代價(jià)最小者被稱為是最優(yōu)傳輸映射(Optimal Mass Transportation Map),亦即:

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片39
,

最優(yōu)傳輸映射的傳輸代價(jià)被稱為是概率測度

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片22
和概率測度
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片23
之間的Wasserstein距離,記為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片42
。


在這種情形下,Brenier證明存在一個(gè)凸函數(shù)

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片43
,其梯度映射

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片44

就是唯一的最優(yōu)傳輸映射。這個(gè)凸函數(shù)被稱為是Brenier勢能函數(shù)(Brenier potential)。


由Jacobian方程,我們得到Brenier勢滿足蒙日-安培方程,梯度映射的雅克比矩陣是Brenier勢能函數(shù)的海森矩陣(Hessian Matrix),

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片45

蒙日-安培方程解的存在性、唯一性等價(jià)于經(jīng)典的凸幾何中的亞歷山大定理(Alexandrov Theorem)。


看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片46

圖2. 亞歷山大定理。


亞歷山大定理 如圖2所示,給定平面凸區(qū)域

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片47
,考察一個(gè)開放的凸多面體
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片48
,選定一個(gè)面
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片49
,
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片49
的法向量記為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片51
,
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片49
的投影和
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片53
相交的面積記為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片54
,則總投影面積滿足

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片55
,

凸多面體可以被

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片56
確定。亞歷山大定理對(duì)任意維凸多面體都成立。


后面,我們可以看到,這個(gè)凸多面體就是Brenier勢能函數(shù),其梯度映射將一個(gè)概率分布

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片57
映到另外一個(gè)概率分布
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片58
,并且這兩個(gè)概率分布之間的Wasserstein 距離對(duì)偶于此凸多面體決定的體積。理論上,這個(gè)凸多面體可以作為W-GAN模型中的生成器G。



W-GAN中關(guān)鍵概念可視化


Wasserstein-GAN模型中,關(guān)鍵的概念包括概率分布(概率測度),概率測度間的最優(yōu)傳輸映射(生成器),概率測度間的Wasserstein距離。下面,我們?cè)敿?xì)解釋每個(gè)概念所對(duì)應(yīng)的構(gòu)造方法,和相應(yīng)的幾何意義。


概率分布 GAN模型中有兩個(gè)至關(guān)重要的概率分布(probability measure),一個(gè)是真實(shí)數(shù)據(jù)的概率分布

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片59
,一個(gè)是生成數(shù)據(jù)的概率分布
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片60
。另外,生成器的輸入隨機(jī)變量,滿足標(biāo)準(zhǔn)概率分布(高斯、均勻分布)。

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片61

圖3. 由保角變換(conformal mapping)誘導(dǎo)的圓盤上概率測度。


概率測度可以看成是一種推廣的面積(或者體積)。我們可以用幾何變換隨意構(gòu)造一個(gè)概率測度。如圖3所示,我們用三維掃描儀獲取一張人臉曲面,那么人臉曲面上的面積就是一個(gè)概率測度。我們縮放變換人臉曲面,使得總曲面等于

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片62
。然后,我們用保角變換將人臉曲面映射到平面圓盤。如圖3所示,保角變換將人臉曲面上的無窮小圓映到平面上的無窮小圓,但是,小圓的面積發(fā)生了變化。每對(duì)小圓的面積比率定義了平面圓盤上的概率密度函數(shù)。


我們可以將以上的描述嚴(yán)格化。人臉曲面記為

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片63
,其上具有黎曼度量
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片64
。平面圓盤記為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片65
,平面坐標(biāo)為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片66
,平面的歐氏度量為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片67
。保角映射記為

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片68
,

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片69
,這里面積變換率函數(shù)
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片70
給出了概率密度函數(shù)。
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片71
誘導(dǎo)了圓盤
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片65
上的一個(gè)概率測度
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片73
。



看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片74

圖4. 兩個(gè)概率測度之間的最優(yōu)傳輸映射。


最優(yōu)傳輸映射 圓盤上本來有均勻分布

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片75
,又有保角變換誘導(dǎo)的概率分布
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片76

,則存在唯一的最優(yōu)傳輸映射
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片77
。圖4顯示了這個(gè)映射
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片78
,中間幀到右?guī)挠成渚褪亲顑?yōu)傳輸映射。我們看到,鼻尖周圍的區(qū)域被壓縮,概率密度提高。



看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片79

圖5. 離散最優(yōu)傳輸。


離散最優(yōu)傳輸映射 最優(yōu)傳輸映射的數(shù)值計(jì)算非常幾何化,因此可以直接被可視化。我們將目標(biāo)概率測度離散化,表示成一族離散點(diǎn),

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片80
;每點(diǎn)被賦予一個(gè)狄拉克測度,
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片81
,滿足
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片82
。然后,我們求得單位圓盤的一個(gè)胞腔分解,
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片83
,每個(gè)胞腔
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片84
映到相應(yīng)的目標(biāo)點(diǎn)
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片85
,
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片86
。映射保持概率測度,胞腔的面積等于目標(biāo)測度,

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片87
,

同時(shí)極小化傳輸代價(jià),

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片88
。


看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片89

圖6. 離散Brenier勢能函數(shù),離散最優(yōu)傳輸映射。


離散Brenier勢能 離散最優(yōu)傳輸映射是離散Brenier勢能函數(shù)的梯度映射。對(duì)于每一個(gè)目標(biāo)離散點(diǎn)

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片85
,我們構(gòu)造一個(gè)平面
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片91
,這里平面的截距
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片92
是未知變量。這些平面的上包絡(luò)(upper envelope)構(gòu)成一個(gè)開放的凸多面體,恰為離散Brenier勢能函數(shù)
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片43
的圖(Graph),

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片94

圖6左側(cè)顯示了離散Briener勢能函數(shù)。凸多面體在平面上的投影構(gòu)成了平面的胞腔分解,凸多面體的每個(gè)面

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片95
被映成了一個(gè)胞腔
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片84
;每個(gè)面
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片95

的梯度都是
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片85
,因此Brenier勢能函數(shù)的梯度映射就是
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片99
。


根據(jù)保測度性質(zhì),每個(gè)胞腔

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片84
的面積應(yīng)該等于指定面積
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片101
。由此,我們調(diào)節(jié)平面的截距
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片102
以滿足這個(gè)限制。根據(jù)亞歷山大定理,這種截距存在,并且本質(zhì)上唯一。


離散Wasserstein距離 我們和丘成桐先生建立了變分法來求取平面的截距

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片103
。給定截距向量
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片104
,平面族為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片105
,其上包絡(luò)構(gòu)成的Briener勢能函數(shù)為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片106
, 上包絡(luò)的投影生成了平面的胞腔分解
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片107
, 胞腔的面積記為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片108
。我們定義的能量為,

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片109
,

這個(gè)能量在子空間

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片110
上是嚴(yán)格凹的,其唯一的全局最大點(diǎn)就給出了滿足保測度條件的截距。這個(gè)能量的非線性項(xiàng),實(shí)際上是上包絡(luò)截出的柱體體積,

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片111
,

圖7給出了柱體體積的可視化,柱體體積

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片112
是凸函數(shù)。


看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片113

圖7. 離散Brenier勢能函數(shù)的圖截出的柱體體積

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片112

。


體積函數(shù)

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片112
和Wasserstein距離之間相差一個(gè)勒讓德變換(Legendre Transformation)。勒讓德變換非常幾何化,我們可以將其可視化。給定一個(gè)定義在實(shí)數(shù)軸上的二階光滑凸函數(shù)
,其圖
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片116
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片117
是一條凸曲線,這條凸曲線由其所有的切線包絡(luò)而成。如果,在任意一點(diǎn)
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片118
,函數(shù)的切線的斜率為y,則此切線的截距滿足

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片119
,

這被稱為是函數(shù)

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片116
的勒讓德變換。
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片121
以切線的斜率為參數(shù),以切線的截距為函數(shù)值。


看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片122

圖8.凸函數(shù)的圖像由其切線包絡(luò)而成,切線集合被表示成原函數(shù)的勒讓德對(duì)偶。



因?yàn)?/span>

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片116
的凸性,映射
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片124
是微分同胚,記為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片125
。那么,原函數(shù)和勒讓德變換后的函數(shù)滿足關(guān)系:

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片126
,

這里c,d是常數(shù)。原函數(shù)和其勒讓德變換的直觀圖解由圖9給出。我們?cè)趚y-平面上畫出曲線

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片125
,曲線下面的面積是
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片116
,曲線上面的面積是勒讓德變換
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片121
。


看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片130

圖9. 圖解勒讓德變換。


勒讓德變換的幾何圖景對(duì)任意維都對(duì)。我們下面來考察體積函數(shù)

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片112
的勒讓德變換
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片132
。根據(jù)定義,

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片133
,

假如我們變動(dòng)截距

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片104
,或者等價(jià)地變動(dòng)胞腔面積
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片135
,考察兩個(gè)胞腔交界處
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片136
,

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片137
,

p本來屬于

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片138
,變化后屬于
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片84
,所有這種點(diǎn)的總面積為
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片140
。則為Wasserstein距離帶來的變化是:

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片141

因此,總的Wasserstein距離的變化是

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片142
。

由此我們看到Wasserstein距離等于

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片143
,

其非線性部分是柱體積的勒讓德變換。




總結(jié)


通過以上討論,我們看到給定兩個(gè)概率分布

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片144
,則存在唯一的一個(gè)凸函數(shù)(Brenier 勢函數(shù))
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片43
,其梯度映射
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片146
把一個(gè)概率分布
看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片147
映成了另外一個(gè)概率分布。這個(gè)最優(yōu)傳輸映射的傳輸代價(jià)就給出了兩個(gè)概率分布之間的Wasserstein距離。Brenier勢能函數(shù),Wasserstein距離都有明晰的幾何解釋。


在Wasserstein-GAN模型中,通常生成器和判別器是用深度神經(jīng)網(wǎng)絡(luò)來實(shí)現(xiàn)的。根據(jù)最優(yōu)傳輸理論,我們可以用Briener勢函數(shù)來代替深度神經(jīng)網(wǎng)絡(luò)這個(gè)黑箱,從而使得整個(gè)系統(tǒng)變得透明。在另一層面上,深度神經(jīng)網(wǎng)絡(luò)本質(zhì)上是在訓(xùn)練概率分布間的傳輸映射,因此有可能隱含地在學(xué)習(xí)最優(yōu)傳輸映射,或者等價(jià)地Brenier勢能函數(shù)。對(duì)這些問題的深入了解,將有助于我們看穿黑箱。


看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱有限元理論圖片148

圖10. 基于二維最優(yōu)傳輸映射計(jì)算的曲面保面積參數(shù)化(area preserving parameterization),蘇政宇作。

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片149

看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱cae-fea-theory圖片150

圖11. 基于三維最優(yōu)傳輸映射計(jì)算的保體積參數(shù)化 (volume preserving parameterization),蘇科華作。


(在2016年,老顧撰寫了多篇有關(guān)最優(yōu)傳輸映射的博文,非常欣慰地看到這些文章啟發(fā)了一些有心的學(xué)者,發(fā)表了SIGGRAPH論文,申請(qǐng)了NSF基金。感謝大家關(guān)注老顧談幾何,希望繼續(xù)給大家靈感。)




參考資料

[1]Arjovsky, M. & Bottou, L.eon (2017) Towards Principled Methods for Training Generative Adversarial Networks

[2] Arjovsky, M., Soumith, C. & Bottou, L.eon (2017) Wasserstein GAN.

[3] Xianfeng Gu, Feng Luo, Jian Sun and Shing-Tung Yau, Variational Principles forMinkowski Type Problems, Discrete Optimal Transport, and Discrete Monge-Ampere
Equations, Vol. 20, No. 2, pp. 383-398, Asian Journal of Mathematics (AJM), April 2016.



開放分享:優(yōu)質(zhì)有限元技術(shù)文章,助你自學(xué)成才

相關(guān)標(biāo)簽搜索:看穿機(jī)器學(xué)習(xí)(W-GAN模型)的黑箱 有限元技術(shù)培訓(xùn) 有限元仿真理論研究 有限元基礎(chǔ)理論公式 能量守恒質(zhì)量守恒動(dòng)量守恒一致性方程 有限體積法 什么是有限元 有限元基礎(chǔ)知識(shí) 有限元軟件下載 有限元代做 Fluent、CFX流體分析 HFSS電磁分析 Ansys培訓(xùn) 

編輯
在線報(bào)名:
  • 客服在線請(qǐng)直接聯(lián)系我們的客服,您也可以通過下面的方式進(jìn)行在線報(bào)名,我們會(huì)及時(shí)給您回復(fù)電話,謝謝!
驗(yàn)證碼

全國服務(wù)熱線

1358-032-9919

廣州公司:
廣州市環(huán)市中路306號(hào)金鷹大廈3800
電話:13580329919
          135-8032-9919
培訓(xùn)QQ咨詢:點(diǎn)擊咨詢 點(diǎn)擊咨詢
項(xiàng)目QQ咨詢:點(diǎn)擊咨詢
email:kf@1cae.com