SST湍流模型
2019-03-15 by:CAE仿真在線 來源:互聯(lián)網
最初,SST湍流模型的引入就是為了精確的預測空氣動力學中的逆壓梯度分離流。幾十年過去,現(xiàn)存的的湍流模型都不是很奏效。從流體邊界層到分離渦,普遍使用的kEpsilon模型并不能夠準確預測。Johnson-King是第一個能夠準確預測翼型的湍流模型,但是這個模型很難拓展為三維模型因此他并沒有被廣泛的使用。
在近壁區(qū),kOmega模型要比kEpsilon模型準確的多。對于適當?shù)哪鎵禾荻攘骺梢院芎玫剡M行預測。但是對于逆壓梯度導致的分離流,kOmega模型預測的結果也并不是很良好。尤其是omega方程對于邊界層之外的值很敏感。雖然kOmega方程以omega方程代替kEpsilon的epsilon方程,并且在近壁區(qū)獲得了良好的效果,但是這種對主流場的敏感性使得kOmega模型也存在缺陷。這也是zonalBSL模型以及SST模型的引入動機。
SST湍流模型主要用于航空動力學,但其也在其他工業(yè)應用中有很大的應用并且被植入了CFD代碼中。確實,出了航空航天,其他工業(yè)應用中也有很多壓力所向分離流的工況。在CFX的代碼中,SST模型的收斂性可以和kEpsilon模型媲美。增強壁面函數(shù)也避免了近壁區(qū)過密的網格。DES模型也得益于zonal模型的原型。目前,SST湍流模型也有大量的工業(yè)應用以及驗證的算例。
湍流模型一個必要的特點就是壁面的準確性和穩(wěn)健性。另外,求解結果不應該對壁面的網格過分敏感。對于復雜的工業(yè)應用,y+<2很難滿足。另一方面,壁面函數(shù)需要使用在槽網格上,這導致在致密網格區(qū)對解的準確產生影響。因此,我們引入了一個新的壁面函數(shù),基于壁面的網格致密度,它會自動的從低雷諾數(shù)方程轉換為壁面函數(shù)模型。
千錘百煉的測試
下圖是Couette流的計算模擬,其使用了3個不同的網格,y+分別約為0.2、9和100。盡管近壁處的網格有很大的不同,但是三種網格的剪切力相差不超過2%,且符合log法則。因此,新的壁面函數(shù)模型大大提高了精度,也使得網格劃分變得更加容易。
同時,我們還對上圖的飛機進行計算模擬。WB的網格數(shù)為583萬,WBNP的網格數(shù)為843萬。均為使用ICEM生成的六面體網格。在120-150個迭代數(shù)之后,阻力(最敏感的變量)業(yè)已收斂。下圖為drag polar和實驗的對比以及殘差圖。從圖中可以看出,模擬和實驗結果相當吻合。
這充分的表明了,合適的RANS湍流模型(代碼)可以精準的對空氣動力學進行預測。
最近,Spalart提出了一個在邊界層內使用RANS方程,對自由剪切流使用LES方程的混合模型,這個模型稱之為DES,它和SpalartAllmaras以及SST湍流模型一起使用。其中,選擇RANS模型選擇主要考慮的是他們能夠很好地預測分離流。
對于精細的網格,邊界層內部可能就會發(fā)生RANS到DES的轉換,這導致網格依賴性的分離。我們對幾個2維翼型進行了模擬。在這幾個算例中,翼展方向的網格非均勻分布和翼弦方向相同。SST-DES模型將分離點在流體上游方向提前,SST-RANS卻和實驗結果有很好的吻合。為了減少DES對邊界層RANS模型的影響,SST對提供了一種“保護”機制并稱為zonal DES模型。
下圖顯示了zonal DES模型一個有趣的地方,在這個鈍體擾流中,進口是一個完全發(fā)展的湍流。對于這種進口,幾乎所有計算域的網格要小于湍流尺度。對于原始的SST-DES模型,這意味著DES限制器在大部分計算域都被激活,這導致大部分計算域都是采用LES模型來模擬。對于zonal SST-DES模型,進口部分使用F2限制器,對于這一部分可以使用RANS模型來處理。DES限制器只在鈍體下游激活,我們也比較關心這一部分的湍流結構。在上游區(qū)域使用SST模型計算,基本處于穩(wěn)定的狀態(tài)。下游部分采用DES來計算,
上圖是是SST模型、CFX中的SST-DES zonal模型、以及實驗數(shù)據(jù)的對比結果。我們會發(fā)現(xiàn)在流體的下游部分,DES模型和實驗數(shù)據(jù)有較好的吻合。
RANS的弱點
很久以來,RANS湍流模型在分離流中低估湍流應力的弱點廣為人知,這或許是導致下游CFD數(shù)據(jù)不準的主要原因。在第九屆的ERCOFTAC/IAHR/COST Workshop的討論結果中得出(主要討論應用在周期性丘陵的湍流模型):那些可以準確預測分離流的模型,例如SA模型、SST模型對分離區(qū)域會有所高估。當前研究也主要集中于這方面問題。這在S.Obi的研究正有了充分的討論。相比于kEpsilon模型,SST模型對分離流的預測有很大的提高,但是和實驗數(shù)據(jù)對比的時候,發(fā)現(xiàn)SST模型預測的流型恢復時限較慢。但需要注意的是,雖然kEsilon對流型恢復時限有很好的預測,但這主要是因為它低估了分離。
然而,DES的這個缺點并不是經常存在的,詳見上圖。對于表面氣穴工況,由于其高度的網格依賴性,原始的DES模型需要謹慎使用。反之,zonal DES模型卻是個比較好的選擇。
本文主要內容來自Mentor et al. 所著的Ten Years of Industrial Experience with SST Turbulence Model
相關標簽搜索:SST湍流模型 Fluent培訓 Fluent流體培訓 Fluent軟件培訓 fluent技術教程 fluent在線視頻教程 fluent資料下載 fluent分析理論 fluent化學反應 fluent軟件下載 UDF編程代做 Fluent、CFX流體分析 HFSS電磁分析